A Coupled Prediction Scheme for Solving the Navier-Stokes and Convection-Diffusion Equations

نویسندگان

  • J. Deteix
  • A. Jendoubi
  • D. Yakoubi
چکیده

Abstract. This paper presents a new algorithm for the numerical solution of the Navier-Stokes equations coupled with the convection-diffusion equation. After establishing convergence of the semi-discrete formulation at each time step, we introduce a new iterative scheme based on a projection method called Coupled Prediction Scheme (CPS). We show that even though the predicted temperature is advected by a velocity prediction which is not necessarily divergence free, the theoretical time accuracy of the global scheme is conserved. From a numerical point of view, this new approach gives a faster and more efficient algorithm compared to the usual fixed-point approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New splitting methods for convection-dominated diffusion problems and Navier-Stokes equations

We present a new splitting method for time-dependent convention-dominated diffusion problems. The original convention diffusion system is split into two sub-systems: a pure convection system and a diffusion system. At each time step, a convection problem and a diffusion problem are solved successively. A few important features of the scheme lie in the facts that the convection subproblem is sol...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

Numerical study of lattice Boltzmann methods for a convection–diffusion equation coupled with Navier–Stokes equations

Numerous lattice Boltzmann (LB) methods have been proposed for solution of the convection–diffusion equations (CDE). For the 2D problem, D2Q9, D2Q5 or D2Q4 velocity models are usually used. When LB convection–diffusion models are used to solve a CDE coupled with Navier–Stokes equations, boundary conditions are found to be critically important for accurately solving the coupled simulations. Foll...

متن کامل

A Combined Hybridized Discontinuous Galerkin / Hybrid Mixed Method for Viscous Conservation Laws

Recently, we have proposed a method for solving steady-state convection-diffusion equations, including the full compressible Navier-Stokes equations [17]. The method is a combination of a mixed Finite Element method for the diffusion terms, and a Discontinuous Galerkin method for the convection term. The method is fully implicit, and the globally coupled unknowns are the hybrid variables, i.e.,...

متن کامل

A Hybridized DG/Mixed Scheme for Nonlinear Advection-Diffusion Systems, Including the Compressible Navier-Stokes Equations

We present a novel discretization method for nonlinear convection-diffusion equations and, in particular, for the compressible Navier-Stokes equations. The method is based on a Discontinuous Galerkin (DG) discretization for convection terms, and a mixed method using H(div) spaces for the diffusive terms. Furthermore, hybridization is used to reduce the number of globally coupled degrees of free...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2014